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Abstract 

As is well known, Lagrangian mechanics have been entirely geometrized in terms of symplec- 
tic geometry. On the other hand, the geometrization of non-holonomic mechanics has been less 
developed. However, due to the interest aroused by non-holonomic geometry, many papers have 
been devoted to this subject. In this article we generalize the construction of a connection whose 
geodesics are the trajectories of a system, obtained by Vershik and Feddeef in the case where the 
Lagrangian is quadratic and the constraints are linear on the velocities. Using the algebraic formal- 
ism of the connections theory introduced by the first author, we carry out the construction in the 
general case of an arbitrary mechanical system (i.e. of a manifold with a convex Lagrangian not 
necessarily homogeneous) with ideal non-holonomic constraints. Moreover, we prove something 
stronger than the result of Vershik and Feddeev: our connection has not only the above-mentioned 
property for the geodesics, but it preserves the Hamiltonian by parallel transport. This connection 
is then a generalization of the Levi-Civita connection for the Riemannian manifolds for which the 
metric (i.e. the kinetic energy) is preserved by parallel transport. © 1999 Elsevier Science B.V. All 
rights reserved. 
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1. A survey of the algebraic formalism for the theory of connections 

In this article we follow the ideas of Gallissot [3] and Klein [4], for the geometrization of 

Lagrangian mechanics, in which the framework of the tangent bundle plays an essential role. 
In the last part of his thesis ([4], ch. 6), Klein applied his point of view to non-holonomic La- 

grangian systems, obtaining, among other results, a geometric presentation of the principle 

of minimal curvature. Recently, owing to the interest aroused by non-holonomic geometry, 

many papers have been devoted to this subject (cf. for example [ 1,7,8,10-13], and [9], which 
contains a large bibliography). 

Our aim is to set up a connection whose geodesics are the trajectories of the system 

and which preserves the Hamiltonian by parallel transport. Moreover, we suppose that the 
Lagrangian is an arbitrary convex function without homogeneity hypothesis. As we will 

see, even in the simplest case when the Lagrangian is the sum of a quadratic form and a 

potential which does not depend on the velocities, the torsion of the connection does not 
vanish. Therefore the non-vanishing of the torsion is essentially related to the deviation 

from the homogeneous case. 

In this paper we use the algebraic formalism for the theory of connections introduced 

in [6], which is based on the Fr61icher-Nijenhuis theory of derivations associated with 

vector-valued forms (cf. [2]). We recall in this section the essential notions of this 
formalism. 

1.1. Connections 

Let M be a differentiable manifold. A p-form ~o 6 ® P T * T M  is called semi-basic if 
09 (Xl . . . . .  Xp) = 0 whenever one of the vectors Xi is vertical. In the same way, a vector- 

valued/-form L (i.e. L ~ ® t T * T M  ® T T M )  is called semi-basic if it is vertical valued 

and L(X1 . . . . .  Xt) = 0 whenever one of the vectors Xi is vertical. We shall denote by 
T v the vertical space, To* the space of the semi-basic l-forms and A P T  * the space of the 
skew-symmetric semi-basic p-forms. In local adapted coordinates (x ~, ya) 2 scalar and 

vector semi-basic forms have the expression, respectively: 

(.0 = (.Oil . . . ip(X,  y) dx q ® ' "  ® dx iJ', 

I~ = t.~ ~ (x, y)  dx ~ ® . . .  ® dx i' ® a_~ 
...... OyJ" 

Let :r : T M  > M be the tangent bundle to M and P : T T M  > T M  the tangent 
bundle to T M .  We have the exact sequence: 

0 > T M  x T M  i j > T T M  > T M  x T M  ~ O, 
M M 

2 The y~ are the co-ordinates of a vector of TM on the basis (O/OxU). 
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where i (v,  w) :=  ~ ( v  + tw)l t= 0 is the natural injection in the vertical bundle T ~ and 

j :=  (P,  7r). The (1-1) tensor J :=  i o j on T M  is called almost tangent structure or 
vertical endomorphism. In adapted local coordinates 

0 
J = d x a ® - -  

0y~" 

The following identities hold: 

j 2 = 0  and [ J , J ] = 0 .  

Note that Ker J = I m  J = TV. 

The vertical field C: :=  i(z, z) is called canonical f ieM or Liouville field. In local 
coordinates 

0 
C = y  ~ -  

Oy~" 

Definition 1.1. A spray is a vector field S on T M  such that J S  = C. 

Locally: 

0 0 
S = - -  + fC~(x, y ) - -  

3x ~ aye" 

With any spray a system of ordinary second-order differential equations is associated, 

and conversely a spray is associated with any system of ordinary second-order differential 

equations, in the following way. A curve F : I ~ M such that F '  is an integral curve of  

S, i.e. S×, = F", is called a path of  S. L o c a l l y i f y  : t ~ ~ xa( t )  is a path of  S, t hen thex  ~ 
verify the second-order equations: 

d2x~ f ~ ( x ,  dx - ¥ ) .  

Conversely, if we have a system of ordinary second-order equations, the spray is defined 

by this formula and this definition does not depend on the local coordinates. 3 

Let L be a (scalar or vector-valued) semi-basic/-form, l > 1; the potential L ° of L is the 

(l - 1) form defined by L ° = i sL  where S is an arbitrary spray. Obviously, L ° does not 

depend on the choice of  S. 

A sprayS is called homogeneous if [C, S] = S. This condition means that the functions 

f ~  Ix, y) are homegeneous of  degree 2 in the variables ya. If, in addition, S is C: on the 

zero section, the f ~  are quadratic in the yU. The vertical vector field S* :=  [C, S] - S 

which estimates the non-homogeneity of  S is called deflection. 

Definition 1.2. A connection on M is a (1-1) tensor field F on T M  such that 

J F  = J and F J  = - J .  

3 The sprays are also called SODE (second-order differential equations), cf, for example [11]. In [6] they 
are called semi-sprays, and the term spray is reserved to homogeneous second-order equations. 
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The connection is called linear if [C, F ]  = 0 (if F is C ~ on T M  \ {0} but is not C l on the 

zero section, the connection is called homogeneous). 

In the basis (O/Ox ~, O/0ya), a connection is represented by the matrix 

-2r~ -a~ 

The fuctions Fff are called the coefficients o f  the connection. If  the connection is linear, 

then the Fff are linear in the ye :  Fff (x, y) = y× F ~  (x). If  the connection is homogeneous, 

the Fff are homogeneous of  degree 1 in the yY. 

The semi-basic tensor H = (1 /2 ) [C , / " ]  which estimates the non-homogeneity of  the 

connection is called tension. 

It is easily verified that F 2 = I and that the eigenspace corresponding to the eigenvalue 

- 1  is the vertical space. Then T T M  splits into the direct sum 

T T M  = T h ~ T v, 

where T h is the eigenspace corresponding to the eigenvalue + 1, called horizontal space. 

We denote by h and v the horizontal and vertical projectors: 

h : =  1(1 + F ) ,  v :=  1(1 _ F) .  

Consider two manifolds N and M, and two C °¢ maps y : N --+ M and z : N -+ T M 

such that zr o z = F: 

T M  

N ×> M.  

If  w • ~ ( N )  and ~z : ~v _.+ T~rz M is the natural isomorphism, the covariant derivative 
of z with respect to w is defined by 

Dw(x)Z = ~z(x)(V o z ,  o w).  

In particular, for N = M, y = id and w, z two vector fields on M, we have 

Dwz = w~ ( Oz~ ) a \Ox  ~ + r ~ ( x , z ( x ) )  Ox~ 

Let N = I be an interval of  R, w = d/dt ,  y : I ~ M a curve on M and z : I --> T M  
a vector field along y.  We have 

(dz' , dr°) 
Dd/dtZ = \ dt + F~ (y( t ) ,  z ( t ) ) -~ - -  Ox~" 

A vector field z • T M  along a curve y is calledparallel if Dd/dtZ = 0 ,  i.e. vz' = O. A 
geodesic is a curve y such that 

Dd/dt Y t -~- O, 
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which means that the acceleration is horizontal: 

vy"  = O. 

A spray S is canonically associated with a connection. It is defined by 

S :=hTS, 

where S is an arbitrary spray (S does not depend on the choice of  S). It is easy to check that 

the paths o f  the spray associated with a connection are the geodesics o f  the connection. 

Proposi t ion 1.3 (cf. [6]). I f  S is a spray then F :=  [J, S] is a connection. 

It is important to note that this connection is not, in general, the most appropriate con- 

nection associated with S. Indeed, the spray of  [J, S] is not S ,  but (1/2)(S + [C, S]). Then 

the geodesics o f  [J, S] are not the paths S, unless S is homogeneous. In other words, if a 

spray S - i.e. a system of ordinary second-order equations - is given, the geodesics of  the 

connection [J, S] are not solutions of  this system, unless the equations are homogeneous. 

The notion of  torsion is introduced in order to construct a connection whose geodesics are 

the solutions of  a second-order non-homogeneous system (cf. [6]). 

Definition 1.4. The semi-basic vector-valued 2-form t :=  (1/2)[J ,  F ]  is called the weak 

torsion of  F .  The strong torsion is the semi-basic vector-valued 1-form T :=  t ° - H, where 

H is the tension of  the connection. 

It is easy to see that the strong torsion "equilibrates" the spray S of  the connection, in the 

sense that its potential compensates the deflection of  S, i.e. 

T ° + S* = 0. 

The following result holds: 

Theorem 1.5 [6, (I.55)]. Let S be a spray and T a semi-basic (1-1) tensor field which 

equilibrates S. Then there exists one and only one connection I ~ whose spray is S and 

whose strong torsion is T. It is given by 

r = [J, s] + T. 

Note that T ---- 0 implies F ---- [J, S], and then [J, F ]  = [J, [J, S]] = (1/2)[[J ,  J] ,  S] --- 

0; so t = 0, and consequently, H = 0. Conversely, if H and t vanish, T = 0, so T = 0 if 

and only if t = 0 and the connection is homogeneous. When the connection is linear, T and 
t agree with the usual torsion, up to the identification of  the semi-basic tensors at a point 

z ~ T M  with the tensors on T~zM. 

Then: 

between "S"  and "arc" the connections whose spray is S and whose geodesics are the 

solutions o f  a given second order system are given by the fo rmula / "  = [J, S] + T where 

T is a semi-basic ( l - l )  tensorfield T M ,  equilibrating S. 
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Every connection 1" on M determines an almost-complex structure F on T M  which 

permutes the vertical and horizontal spaces; F is the unique (1-1) tensor field on T M  such 

that 

F J  = h and Fh = - J .  

F and the spray of  the connection are related by F = h[S, h] - J. 

Finally, the curvature is the semi-basic vector-valued 2-form R :=  - ( 1 / 2 ) [ h ,  h]. For 

a linear connection this agrees with the usual curvature, up to the identification of  the 

semi-basic tensor at z ~ T M  with the tensors at T~rz M. 

1.2. Lagrangians 

Definition 1.6. A Lagrangian is a map E : T M  --~ R which is C ~ on T M  \ {0}. E is 

called regular if the 2-form I'2 :=  dd j  E is symplectic. 

Locally, E is regular if and only if 

O2E 
det ~ ~ 0. 

For example, if g is a Riemannian (or pseudo-Riemannian) metric on M, the quadratic form 

E(v)  : =  (1 /2)g(v ,  v) on T M  is a regular Lagrangian. If  E is homogeneous of  degree 2, 

i .e . /~cE ---- 2E, and E is C t on the zero section, E defines a Finsler structure. 4 

Proposi t ion 1.7 (cf. [5; 6, (11.15)]). Let E be a regular Lagrangian and 7-[ :=  ~.c E - E 

be the associated Hamiltonian. The vector field S on T M defined by 

isI2 = - d ~  

is a spray, called canonical spray. The connection 1" = [ J, S] is called the natural connection 

associated with E. In particular, i f  E is the quadratric form associated with a Riemannian 

(or pseudo-Riemannian) metric, we get the Levi-Civita connection. 

Locally, the components f ~  of  the canonical spray E are 

e3E _ yX a2E "~ 
f~----_g~t~ ~x~  OxX~y~] ' 

where the g'~# are the coefficients of  the inverse of  the matrix II 02E/OyU8Y~ II. An easy 
computation shows that the paths of  S are the solutions of  the Euler-Lagrange system 
defined by E:  

d 0E 0E 
- -0 .  

dt ~ a  Ox a 

4 If E is (~2 and homogeneos of degreee 2, it is quadratic and then it defines a Riemannian (pseudo- 
Riemannian) structure. 
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Note that if E is homogeneous, then S is homogeneous too and the paths of  S are the 

geodesics of  F .  Inversely, if E is not homogeneous, the paths of  S are not the geodesics of  

the connection. In other words: 

I f  E is not homogeneous, the geodesics of [ J, S] are not the solutions of the Euler-Lagrange 
equations. 

It is well known that a regular Lagrangian E allows to define a metric (pseudo-Riemannian 

in general) on the vertical bundle, by setting 

g(JX ,  J Y )  = S2(JX, Y) for X, Y E T T M ,  

where S2 = ddj  E. If F is a connection on M, g can be extended to T M  by putting 

gr (X ,  Y) = g (JX ,  JY)  + g(vX, vY), 

where v is the vertical projector (cf. [6]). It easy to see that the horizontal and vertical spaces 

are orthogonal with respect to gr.  This is the reason why g r  is called the adapted metric 

to F. 5 If  E is convex, i.e. the matrix If 32E/3y~OY ~ II is positive-definite, then gr  is a 

Riemannian metric. 

Finally, we have 

gr(X ,  Y) = ~2(X, FY) ,  

where F is the almost-complex structure associated with F .  

2. Lagrangian connections 

As we said, if E is a non-homogeneous Lagrangian, the geodesics of  the "natural" con- 

nection [J, S] are not the paths of  S, i.e. the solutions of  the Euler-Lagrange equations. The 

notion of  Lagrangian connection allows us to remove this difficulty. 

Definition 2.1. Aconnect ioniscal ledLagrangianif thehorizontalspaceisLagrangian with 

respect to the symplectic form ~2 = ddjE, i.e. if £2(hX, hY) = 0 for any X, Y ~ T T M .  

One can easily check that F is Lagrangian if and only if itS-2 = 0, which is equivalent 

to ih~r2 -~ S-2, to ivF2 = £2 and to iF~'-2 = O. 

Remark .  I f  E is homogeneous of degree 2, the natural connection [ J, S] is Lagrangian. 

Indeed 

ilj,Sl£2 = isdjS2 + d j i s ~  - 12cS'2. 

5 This metric is frequently called Sasaki metric. 
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Now diE2 = 0 and/~cE2 ---- E2, because E is homogeneous of degree 2; thus 

i l j , S l ~  = d j d E  q- £2 = O. 

The interest of  the Lagrangian connection comes into sight from the following property: 

Proposi t ion 2.2 (cf. [6, I, I1.32, 11.33]). Consider a regular Lagrangian E, ~ = 12c E - E 

the associated Hamiltonian and F a Lagrangian connection. Then the spray o f  F is the 

canonical spray i f  and only i f  

dhT-L = O. 

Indeed, let S be the spray of  F ; we have 

ih(iS$2 -q-tiT-/) = i h i s ~  + dhT-[ = i s i h ~  -- i hS~  q-dhT-L. 

Now ih~-2 ~- ~2, beacuse F is Lagrangian and hS = S, S being the spray of F ;  then 

ih( iSO + d ~ )  = dhT-/. 

On the other hand, it is easy to see that the 1-form o9 = isg2 + d ~  is semi-basic and 

hence ihw = w. Then we have 

i s ~  + d ~  = dhT-[, 

which proves that S is the canonical spray if and only if dhT-~ = 0. 

Interpretation. This property means that the Hamiltonian is preserved by parallel transport. 

Indeed, let us consider the set of the vector fields along a curve y : I ~ M, that is the set 

of  the z : I --~ T M such that r ro  z( t )  = y ( t ) .  The following corollary holds: 

Corol la ry  2.3. Let S be the canonical spray and F be a Lagrangian connection whose 

spray is S. Consider a curve y : I --+ M. For every parallel vector field z along y,  one has 

d 
- ~ ( z ( t ) )  = o. 

In other words, the Hamiltonian is preserved by parallel transport. 

Indeed, 

d 
- ~ ( z ( t ) )  = dT-/(z'(t)) = d ~ ( h z ' ( t ) )  

because z is parallel. Then 

d 
-~ 7-[(z(t ) ) = (dh T-O(z' (t ) ) = O. 

Remark .  As it appears from the above remark, in the Riemannian case the natural connec- 

tion - which actually is the Levi-Civita connection - is Lagrangian, hence the Hamiltonian 
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is preserved by parallel transport. Since 7Y(z) = E(z)  = (1/2)g(z ,  z), the proper~. 

(d/dt)7-[(z(t)) = 0 is equivalent to 

D g = 0 ,  

which is the essential property o f  the Levi-Civita connection. Then the Lagrangian connec- 

tions whose spray is the canonical one, generalize, to the non-homogeneous Lagrangians. 

the proper~ Dg = O. 

The following result gives a generalization of the construction of the Levi-Civita con- 

nection for general Lagrangians, even non-homogeneous. 

T h e o r e m  2.4. Let E be a regular Lagrangian and ~S a spray. Then there exists a Lagrangian 

connection whose spray is ~S. In particular (taking for  ?S the canonical spray), there ex- 

ists a connection whose geodesics satify the Euler-Lagrange equation and such that the 

Hamiltonian is preserved by parallel transport. 

Indeed, le t /~  = [J, S] + T be a connection whose spray is S. Then P is Lagrangian 

if and only if i[.~2 = O, i.e. ilj.~lS2 + iTS-2 = O. Let S be the canonical spray and put 

U = S - S. We get i[j, gjF2 + iT£2 = i[j.S]S2 -- ilJ.Ul$-2 n t- iT$'2. On the other hand, since 

S is  the canonical spray, we obtain 

i[j,Sl$2 = i j Ls~2 = i j d i s ~  = - i  jd27-[ = O. 

Then the condition ensuring that/~ is Lagrangian is 

iT if2 -- i [ j ,Ul~ = O. 

Since ilj,ul£2 = i j ~ u ~ 2 ,  this condition can be written as 

g ( T X ,  J Y )  + £ u F 2 ( J X ,  Y) = g (TY ,  J X )  + £ u F 2 ( J Y ,  X), (1) 

because I-2(vX, Y) = g (vX ,  J Y ) .  If  we put 

O ( X ,  Y) = g ( T X ,  J Y )  + C u S 2 ( J X ,  Y), (2) 

condition (1) can be expressed by saying that the scalar semi-basic 2-form O is symmetric. 
Since T has to "equilibrate" S, the problem reduces to finding a scalar semi-basic and 

symmetric 2-form 69 such that 

O(S ,  Y) = -g(~S*, J Y )  + (12uS2)(C, Y). (3) 

As soon as O has been fixed, one defines, following (2), the strong torsion T by 

g ( T X ,  J Y )  = O ( X ,  Y) - (E, uI-2)(JX,  Y). 

Let us consider the scalar semi-basic 2-forms 69 = ic E2 Q w, where co is a scalar semi-basic 
l - f o r m  and Q is the symmetric product. Let us show that co can be taken in such a way that 

(3) is satisfied. Now (3) is satisfied if and only if 

co°icI2 + g(C, C)w = - i~ ,F2 + icE.uF2. (4) 
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Then, taking the potential of both sides of  this equation, we have 

2w° g(C, C) = -g(FS*, C) - (£u$2)(S ,  C). 

Replacing it in (4), we find 

6 0  - -  m 

r 1 
/ - i~,/2 + icl2u[2 + 

g(C, C) L 
g(FS*, C) + £uI-2(S, C) ic$2  ] 

2g(C, C) J 

which determines 69 and, consequently, T. 

For example,  in the case where S is the canonical spray (i.e. U = 0), we get 

1 
~* C)icl-2 ® C g(C, C)i~,l2 ® C - g(C, C) icI2  ® S*]. T -- (g(C, C)) i [ g ( S  ' 

(5) 

3. Non-holonomic constrained systems 

This section is, partially, a reformulation in our formalism of  some definitions and results 

of  [13]. 

Definition 3.1. An admissible non-holonomic constraint (or, simply, a non-holonomic con- 

straint) is a submanifold .4 of  T M  everywhere transval to the vertical bundle, that is such 

that at any point of  .4 one has 

T`4 + T v = T T M ,  

where T v is the vertical bundle. 

The semi-basic 1-forms 09 e J*(T .4)  ° are called reaction forces. 

.4 is called ideal if  the canonical field C is tangent to A.  

An admissible spray for the constraint ,At is a vector field S t e Y(`4) such that JS '  = C. 

Remarks. 
1. The transversality condition implies o f  course that dim fit > n = dim M. It expresses 

that .4 is fibered on M by the restriction to .4 o f  the projection o f  T M on M. 6 

2. The reaction forces are the 1-forms w E T * ( T M )  such that w = i jot with ot e T * T M  

and a ( X )  = 0 for  any X e T.4. I f  .4 is defined as the kernel o f  the submersion 

f = ( f !  . . . . .  fn -~)  : T M  --~ R n-k, where the f i e  C ~ ( T M ) ,  then (T.4)  ° is the set 

o f  the 1-forms et on T* M such that ot = ) q d f l  + . . .  4- )~n-kd fn-k.  Then the reaction 
forces have the expression 

o9 = XIdj  f l  'F • • • 4- Xn-kdJ fn -k .  

6 Under the natural hypothesis that `4 is connected and smooth. 
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3. The condition that the constraint is ideal comes from [13]. It expresses that the work o f  

the reaction forces is O. Indeed, C ~ T A  if  and only if ~(C)  = O for  any ~ ~ T * T M  

such that ot ( X)  = 0 Y X  ~ T.A, and that is equivalent to co ( S) = O for  any reaction force 

co, where S is an arbitrary spray. Now co(S) = 0 expresses in fact  that the work o f  co is 

O, along all the curves. 

I f  .A is defined by a submersion F = ( f l  . . . . .  fn -k )  : T T  M --+ R n-k, the condition 

that .A is ideal can be expressed by/2c F = 0 mod ( F). l f  f j . . . . .  f~,-k are homogeneous 

this condition is satified and hence A is ideal. In particular, linear constraints are ideal. 

4. I f  S' is an admissible spray, its integral curves project on curves on M verifying a second- 

order equation constrained by the condition that the veloci~ is in A. Conversely any 

second-order equation on M such that the velocities o f  the solutions are in A defnes  a 

spray which is admissible for  ~4. 

The transversality condition is the usual one on the non-holonomic constraints (cf. [9,13]). 
In fact we have: 

Proposition 3.2. Let ( T A )  ° be the annihilator o f  T,A. The following properties are 

equivalent: 

(1) ,A is an admissible non-holonomic constraint. 

(2) (T,A) ° does not contain semi-basic 1-forms. 

(3) d i m ( T A )  ° = d i m J * ( T A )  ° . 

(4) d i m T A  = n + d i m ( T A  A T v) . 

Indeed, taking the annihilator of  the admissibil i ty condition T,A + T ~' = T T M ,  one gets 

(TA)  ° n (T ~')° = {0} where (TV) ° is the annihilator of  T ~', i.e. the set T~,* of  the semi-basic 

1-forms, which proves that (1). is equivalent to (2). 

On the other hand, let 

J :  ( T A )  ° --+ J * ( T A )  ° 

be defined by ] w  = J 'co ,  where ( J * w ) ( X )  : =  co(JX).  Property (3). expresses that ] is 

injective. Now Ker J = (T.A) ° N (Tt') °. Then (3). is equivalent to (2). 

Finally, if T A  + T v = T T M  we have d i m T A + d i m  T V - d i m ( T . A  A T v) ----- 2n, hence 

dim T,A = n +  dim T,A f) T v. Conversely, if  this equality holds, there exist n independent 

vectors in T:,A which are not in T: ~'. Completing these n vectors by a basis of  T5 we obtain 

a basis of  T:TM,  which shows that / ' : . .4  + T: v = TrTM. 

Let E be a convex Lagrangian, F a connection on M and g7 the (Riemannian) metric 

on T M  adapted to the connection F (cf. Section 1). 7 Let us denote by T ± A  the normal 

bundle on ..4 defined by the orthogonality with respect to g r .  We have: 

Proposition 3.3. The following properties are equivalent: 

(1) A is an admissible non-holonomic constraint. 

7 In what follows, we shall take for/~ the Lagrangian connection with canonical spray, produced in Section 2. 
However, all that follows holds for an arbitrary connection. 
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(2) T ± A  N T h = {0} where T h is the horizontal distribution. 

(3) dim T±,A = d i m v T ± A  where v is the vertical projector. 

(4) T T M  = T A  ~ vT±Jt .  

Indeed, (2) is obtained by taking the orthogonal of  (1). On the other hand, (2) means that 

v~ ¢ 0 for any ~ 6 T±.A, ~ ~ O, that is the restriction of  ~ to T z A  is injective, which is 

equivalent to dim T ± A  = dim v T ± A .  Then (1), (2) and (3) are equivalent. 

Finally, suppose that (2) holds and let of  ~ v T ± A  A T.A, with ~ 6 T ± A .  We have 

gr(v~ ,  ~) = 0, because v~ ~ T,4. Now g r  is adapted, so gr(v~ ,  ~) = gr (v~ ,  v~) = 

0. Since g r  is positive definite, that implies v~ = 0, hence ( v T - A )  N T A  = 0. But 

dim T ± A  = dim vT±,A,  hence T T M  ----- T.A ~ v T ± A  which shows that (4). holds. The 

converse is evident. 

Corol la ry  3.4 (cf. [13]). Let E be a convex Lagrangian, S the canonical spray and ,,4 a 

non-holonomic admissible constraint. Then there exists a unique vectorfield ~ E T ±,A such 

that the vector field defined on ..4 by S' = S - v~ is an admissible spray. 

Indeed, we have just to decompose S following the direct sum T T M  = T A  ~ vT±,A: 

S = S' + v~. If  ~' is another vector field in T± ,4  such that S = S' + v~', one has 

v(~ - ~i) = 0, i.e. ~ - ~' 6 T h A T i . A  = {0}, hence ~ is unique. On the other hand, S' is 

an admissible spray, because J S' = J S = C. 

4. Geometry of the constraints 

Let E be a convex Lagrangian and F an arbitrary connection (for example, the Lagrangian 

connection associated with the canonical spray as in Section 2). In what follows, we shall 

denote by r and v the projectors on T A  and vT±.A defined by the direct sum 

T T M  = T A ~  v T ± A  

associated wi th /"  (cf. Proposition 3.3). 8 Note that, since v is vertical-valued, we have 

J v = O  and J r = J .  

The vertical endomorphism J induces a (1-1) tensor field J '  on ,A (cf. [10]) defined by 

j r  = r J  ]TA • 

Proposition 4.1. 
( l)  ( j , )2 : 0 

(2) Im J'  = T ~ N T A  C Ker J ' ,  Ker J'  = (T v + F T ± A )  N TA.  

8 Note that r and v depend on E and on the choise of F and, as [10] remarks, the objects which we shall 
construct are rather mechanical quantities than geometrical. 
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Indeed, 

J J* = J r J  = j 2  = 0 and J ' J  = r J r J  = r J  2 = 0 

hence 

Im J '  C Ker J ITS---- Im J ]T~4C Ker J '  

and so ( j , ) 2  = O. 

If X ~ Im J '  then X E T.A and X c Ker J.  Therefore X ~ T ~' A T A .  Conversely, if 

X E T ~' N TA,  then X = r X  and X = J Y ,  whence 

X = r J Y  = r J r Y  = J ' r Y ;  

so X ~ Im J ' .  This proves the first part of (2). 

Let X E Ker J ' ,  i.e. r J X  = 0. This implies that J X  ~ vTZA,  hence there exists 

E T±.A such that J X  = v~. Let us set X = F Y .  We have J X  = v Y ,  whence vY = re .  

From this it follows that Y - ~ ~ T h and so Y ~ T i A  + T h. Therefore 

X ~ F ( T ± A  + T h) : F T ± A  + T" .  

Conversely, if X ~ (T  v + F T ± A )  A T A ,  then X = J Y  + F~ (with ~ 6 T±A).  Now 

X = rX ,  hence 

X = r J Y  + r F ~  = J ' Y  + r F ~ ;  

therefore 

J X  = J r F ~  = J F ~  = v~ 

and then r J X  = rv~ = 0, i.e. J ' X  = 0. This proves the second part of (2). 

Definition 4.2. The induced connection on the constraint A is the (1-1) tensor field on A 

defined by: 

N' = r N  ITA • 

We set 

h ' - - - - - ½ ( l + F ' )  and v ' =  ½ ( I - F ' ) .  

Proposi t ion 4.3. 
1. F '2  = I, h '2 = h', V I2 = V' ,  

2. J ' F '  = J ' ,  F ' J '  = - J ' ,  

3. T A =  T h t ~ 3 T  v ' , w h e r e T  t'' :=  K e r h  ~ = I m v '  = T ~ ' M T A a n d T  h' :=  I m h '  = 

Ker v' = ( T  h ~3 T ± A )  M T.A. 

Proof. Since Im v C T v, we get F v  = - v ,  and then r F v  = 0, i.e. 

r F r  = r F .  
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Therefore 

1. F ~2 = r F r F  IT.a= r F  2 IT.a= r IT.a= I rA .  It follows that h ~ and v ~ are projectors. 

2. JtF~ = r J r F  IT.A= r J F  I r A =  r J  IT.a= J~. In the same way one proves that 

F , j t  = _ j i .  

3. Since h'  and v' are projectors, T,4  = T hI ~ T °r. On the other hand, let X ~ T,4 be such 

that h~X = 0, i.e. r h X  = 0. This implies X ~ vT±.4 ,  hence X ~ T o N T.4. 

Conversely, if X e T o fq T.4, h X  = 0, then g X  = r h X  = O. 

Finally, I m h '  = K e r r  ~. Now v 'X  = 0 means that r v X  = 0 ,  i.e. vX = v~ (with 

~ T±.4) ,  which is equivalent to X - ~ ~ T h . Then X ~ T h ~ T±.4  and therefore 

Im h'  = ( T  h ~) T±.4)  A T.4. [] 

R e m a r k .  Since ,4 is fibered on M by the restriction to ,4 o f  the projection o f  T M on M, 

and T v N T,4  is the vertical bundle with respect to this fibration, Property 3, means that 

F '  is a connection (which in general is not linear) on the fiber bundle .4 ~ M. That 

accounts fo r  the terminology. The definitions o f  geodesics and parallel fields (cf  Section 1) 

adjust naturally to this case. An .4-valued vector field z along a curve V : I --+ M is 

parallel i f  its velocity z ~ = V, o d / d t  is horizontal, i.e. i f  v~z~(t) = O. An admissible 

geodesic is a curve on M such that its velocity is ,4-valued and parallel with respect 

to F'.  

Defini t ion 4.4. Let (M, E,  A)  be a constrained Lagrangian system with convex Lagrangian 

E. The canonical connection adapted to the constraint ,4 is the connection induced by the 

Lagrangian connection constructed in Section 2. 

T h e o r e m  4.5. Let (M, E,  ,4) be a Lagrangian constrained system, with convex Lagrangian 

E (eventually non-homogeneous) and an ideal non-holonomic constraint ,4. Let ff~ be the 

canonical connection adapted to the constraint. Then 

1. The solutions o f  the d'Euler-Lagrange equations are the geodesics o f  F t with velocity 
in .4.  

2. One has 

d 
- f f i~ ( z ( t l )  = o 

f o r  all curves y : I ~ M and all parallel vector fields z(t)  ~ A along y. In other 
words, the Hamiltonian is preserved by parallel transport. 

Proof.  We have just  to prove that (h 'X)  • 7-( = 0 for any X ~ T,4, i.e. 12(S, h~X) = 0 for 

any X E T,4. Now 

~2(S, h 'X)  = g r ( F S ,  h 'X)  = - g r ( C ,  h 'X) .  

Indeed, 

F C  = F J S  = hS = S 
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because S is the spray of  the connection F and so hS  = S. Therefore F S  = - C .  On the 

other hand, Im h'  = (T h + T±,A) fq T.A, hence 

h ' X = h Z + ~ ,  w i t h ~ T ± A .  

Then 

(2(S, h 'X)  = - g r ( C ,  h Z )  - g r ( C ,  ~). 

But since g r  is adapted to the connection F , we have g r ( C ,  h X )  = 0 because C is 

vertical and h X  is horizontal. But g r ( C ,  ~) = 0 because C 6 T.A and ~ 6 T±A.  Then 

~2(S, h 'X )  = O. [] 

Example.  Let us consider a regular Lagrangian E = E2 + U, where E2 is quadratic 

and U = U(x )  is a function on M. E2 determines a Riemannian metric g on M (g is 

the polarization o f  E2 : E2(z) = (1 /2)g(z ,  z)). The Hamiltonian is 7-[ = E2 - U and 

~2 = d d j E  = ddjE2,  because d j U  = O. On the other hand, g(C,  C) = EcT-[ = 2E2. 

Let S be the canonical spray defined by i s l2  = -dT-L Put 

S = S 2 + V ,  

where $2 is the canonical spray of  the Levi-Civita connection defined by i& dd/E2  = - d E 2 .  

Now 

i vdds  E2 = dU 

and locally 

V = V ~ -  
OU 

with V ~ = gal~ Ox~ " 
Oy ~ 

Since the components of  V do not depend on the variables y, we get 

[J, S] = [J, $21, 

i.e. the natural connection is the Levi-Civita connection F2 = [J, $2]. 

Therefore the canonical connection is 

F = F 2 + T ,  

where 7" the strong torsion given by the formula (5) of  Section 2. 

We have [C, S] = [C, $2] + [C, V] = $2 - V, hence 

S* = - 2 V  is,  I2 = - 2 d U  

and 

g(S*, C) = - 2 g ( V ,  C) = - 2 i v I 2 ( S )  = - 2 £ s U .  
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2 
T - g(C, C) ~ [ g ( C '  C)dU ® C + g(C, C)ic£2 ® V - ( £ s U ) i c I 2  ® C] 

i.e. locally, 

Tj i _ 2 gik[(g~,uy)'yU)((OkU)y j + (OjU)yk) -- (yUOc~U)yjyk], 
(gc~ yC~ y~) 2 

where Yi = gijY j. Then the coefficients of the canonical connection are: 

l"j={jik}yk l i - rj, 

where the { j/~ } are the coefficients of the Levi-Civita connection. 
Let us consider now an admissible constraint .4 of codimension 1, in TM, defined by the 

equation 

f ( x ,  y) = O. 

The admissibility condition means that in this case there exists a vertical vector JZ which 

is not tangent to el, i.e. such that JZ • f 7~ 0. Then el is admissible if and only if 

d j f  ¢ 0  

at any point of el. A normal vector field ~ verifies gr(~,  X) = 0 for any X 6 Tel, i.e. 

for X such that d f ( X )  = 0. Then gr(~ ,  ') is proportional to d f ,  or, in other words: 
I2(~, F Y )  = d f ( Y ) ,  i.e. 

i~ I2 = --dF f . 

Then we have 

iv~$2 = i~ivt'2 -- ivi~I2 = i ~  + d F v f  = --dF f -t- d F v f  = - -dF h f  = d j  f 

(because ivt'2 = I2, F being Lagrangian). Therefore the vector field v~ such that 

iv~$2 = d j  f 

splits v T ± e l .  Locally 

Of 0 v~ = gC~# Oyg Oy ~" 

Now el is admissible, hence: d j f  7~ 0, i.e. v~ 7~ 0. We have g(v~, v~) = I2(v~, F~) --- 
d j f ( F ~ )  = v~ • f .  Then 

[I t)~ [12= gUg Of Of 
Oy a Oyg" 



J. Grifone, M. Mehdi /Journal of Geometry and Physics 30 (1999) 187-203 203 

Let X = X.a + Xv~ be the splitt ing of  X with respect to the direct sum T T M  = 

T A  ~ v T ± A  where X.a is the tangent  part to ..4. Impos ing  that XA ~ T,A, i.e. XA • f = 0, 

we find )~ = ( d f ) ( X ) / l l  v~, II 2. The projectors u and r are 

d f  d f  
v - II v~ II ~ ® v~ and r = I II of II ~ ® v~. 

A straightforward computa t ion  gives the connect ion  F '  induced on the constraint.  
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